यदि $^n{C_{r - 1}} = 36,{\;^n}{C_r} = 84$ तथा $^n{C_{r + 1}} = 126$, तो $r$ का मान होगा
$1$
$2$
$3$
इनमें से कोर्ई नहीं
$22$ खिलाड़ियों में से $10$ खिलाड़ियों की एक टीम कितने प्रकार से बनाई जा सकती है, जबकि $6$ विशेष खिलाड़ी सदैव टीम में सम्मिलित रहें तथा $4$ विशेष खिलाड़ी सदैव टीम से बाहर रहें
$10$ व्यक्ति, जिनमें $A, B$ तथा $C$ सम्मिलित हैं, एक कार्यक्रम में भाषण देने वाले हैं। यदि $A, B$ के पूर्व भाषण देना चाहे तथा $B,C$ के पूर्व भाषण देना चाहे तब कुल कितने प्रकार से यह कार्यक्रम हो सकेगा
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
दो पत्ते लाल रंग के और दो काले रंग के है ?
किसी समूह में $4$ लड़कियाँ और $7$ लड़के हैं। इनमें से $5$ सदस्यों की एक टीम का चयन कितने प्रकार से किया जा सकता है, यदि टीम में एक भी लड़की नहीं है ?
कम से कम $3$ लडकियाँ हैं ?
अऋणात्मक पूर्णांको $s$ तथा $r$ के लिये, माना $\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
धनात्मक पूर्णांकों $m$ तथा $n$ के लिये, माना $(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$ जहाँ किसी अॠणात्मक पूर्णांक $p$, के लिये
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$ तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी धनात्मक पूर्णांको $m$, के लिये $g ( m , n )= g ( n , m )$ होगा।
$(B)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g ( m , n +1)= g ( m +1, n )$ होगा।
$(C)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=2 g ( m , n )$ होगा।
$(D)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=( g ( m , n ))^2$ होगा।