If $^n{C_{r - 1}} = 36,{\;^n}{C_r} = 84$ and $^n{C_{r + 1}} = 126$, then the value of $r$ is
$1$
$2$
$3$
None of these
Let $A = \left\{ {{a_1},\,{a_2},\,{a_3}.....} \right\}$ be a set containing $n$ elements. Two subsets $P$ and $Q$ of it is formed independently. The number of ways in which subsets can be formed such that $(P-Q)$ contains exactly $2$ elements, is
If $P(n,r) = 1680$ and $C(n,r) = 70$, then $69n + r! = $
An urn contains $5$ red marbles, $4$ black marbles and $3$ white marbles. Then the number of ways in which $4$ marbles can be drawn so that at the most three of them are red is
In an election there are $8$ candidates, out of which $5$ are to be choosen. If a voter may vote for any number of candidates but not greater than the number to be choosen, then in how many ways can a voter vote
The number of ways in which five identical balls can be distributed among ten identical boxes such that no box contains more than one ball, is