यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो     

  • A

    ${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$

  • B

    ${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$

  • C

    ${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$

  • D

    ${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$

Similar Questions

माना $\alpha, \beta, \gamma$ समीकरण $x^3+b x+c=0$ के तीन मूल हैं। यदि $\beta \gamma=1=-\alpha$, तो $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ बराबर है।

  • [JEE MAIN 2023]

इन दो कथनों पर विचार करें :

$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।

$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।

  • [KVPY 2018]

यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो

  • [IIT 1987]

दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।

  • [KVPY 2014]

यदि समीकररण $x^2-7 x-1=0$ के मूल $a$ तथा $b$ हैं, तो $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ का मान बराबर _______________ है।

  • [JEE MAIN 2023]