माना $\alpha, \beta, \gamma$ समीकरण $x^3+b x+c=0$ के तीन मूल हैं। यदि $\beta \gamma=1=-\alpha$, तो $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ बराबर है।

  • [JEE MAIN 2023]
  • A

    $21$

  • B

    $\frac{169}{8}$

  • C

    $19$

  • D

    $\frac{155}{8}$

Similar Questions

सभी वास्तविक संख्याओं $x$ का वह समुच्चय जिसके लिये ${x^2} - |x + 2| + x > 0,$ होगा

  • [IIT 2002]

माना कि $x ^2- x -1=0$ के मूल (roots) $\alpha$ और $\beta$ हैं, जहाँ $\alpha>\beta$ है। सभी धनात्मक पूर्णांकों $n$ के लिए निम्न को परिभाषित किया गया है

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?

$(1)$ प्रत्येक $n \geq 1$ के लिए, $a _1+ a _2+ a _3+\ldots . .+ a _{ n }= a _{ n +2}-1$

$(2)$ $\sum_{ n =1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{ n =1}^{\infty} \frac{ b _{ n }}{10^{ n }}=\frac{8}{89}$

$(4)$ प्रत्येक $n \geq 1$ के लिए, $b _{ n }=\alpha^{ n }+\beta^{ n }$

  • [IIT 2019]

समीकरण $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^x+1\right)=0$के सभी वास्तविक मूलों का योगफल होगा

  • [JEE MAIN 2022]

समीकरण ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$के वास्तविक मूलों की संख्या है

  • [IIT 1982]

समीकरण $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ के वास्तविक मूलों की संख्या है

  • [JEE MAIN 2021]