If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then

  • A

    ${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$

  • B

    ${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$

  • C

    ${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$

  • D

    ${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$

Similar Questions

Let $\alpha$ and $\beta$ be the two disinct roots of the equation $x^3 + 3x^2 -1 = 0.$ The equation which has $(\alpha \beta )$ as its root is equal to

If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then

Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be

  • [KVPY 2010]

If $\alpha ,\beta ,\gamma$  are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-

The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................

  • [JEE MAIN 2024]