इन दो कथनों पर विचार करें :

$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।

$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।

  • [KVPY 2018]
  • A

    $I$ एवं $II$ दोनों सत्य है

  • B

    $I$ एवं $II$ दोनों असत्य हैं

  • C

    $I$ सत्य है एवं $II$ असत्य है

  • D

    $I$ असत्य है एवं $II$ सत्य है

Similar Questions

समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है

  • [AIEEE 2003]

यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो

  • [IIT 1987]

समीकरण $x|x|-5|x+2|+6=0$ के वास्तविक मूलों की संख्या है :

  • [JEE MAIN 2023]

यदि समीकरण $\sqrt{2 x+1}-\sqrt{2 x-1}=1,\left(x \geqslant \frac{1}{2}\right)$, का $x$ एक हल है, तो $\sqrt{4 x^{2}-1}$ बराबर है

  • [JEE MAIN 2016]

यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है

  • [KVPY 2017]