यदि $\log 2,\;\log ({2^n} - 1)$ तथा $\log ({2^n} + 3)$ समान्तर श्रेणी में हों, तो $n =$
$5/2$
${\log _2}5$
${\log _3}5$
$3/2$
यदि $a _1, a _2, a _3 \ldots$ व $b _1, b _2, b _3 \ldots$ समान्तर श्रेणी में हैं तथा $a _1=2, a _{10}=3, a _1 b _1=1= a _{10} b _{10}$ है, तो $a _4 b _4$ बराबर है
यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।
माना $r = 1,\;2,\;3,....$ के लिये एक समान्तर श्रेणी का $r$ वाँ पद ${T_r}$ है। यदि किन्हीं धनात्मक पूर्णांकों $m,\;n$ के लिये ${T_m} = \frac{1}{n}$ और ${T_n} = \frac{1}{m}$ हों, तो ${T_{mn}}$ का मान होगा
यदि $4$ पदों वाली एक समान्तर श्रेणी के प्रथम व अन्तिम पदों का योग $8$ एवं शेष दो बीच वाली संख्याओं का गुणनफल $15$ हो, तो श्रेणी की सबसे बड़ी संख्या होगी
माना समांतर श्रेढी $3,7,11, \ldots \ldots$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$ है, तो $\mathrm{n}$ बराबर है .............