If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$

  • A

    $5/2$

  • B

    ${\log _2}5$

  • C

    ${\log _3}5$

  • D

    $3/2$

Similar Questions

The sum of $1 + 3 + 5 + 7 + .........$ upto $n$ terms is

The number of terms common between the two series $2 + 5 + 8 +.....$ upto $50$ terms and the series $3 + 5 + 7 + 9.....$ upto $60$ terms, is

Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]

If the ${n^{th}}$ term of an $A.P.$ be $(2n - 1)$, then the sum of its first $n$ terms will be

If $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$ be the $A.M.$ of $a$ and $b$, then $n=$