જો ${a_1},\;{a_2},\;{a_3}.......{a_n}$ એ સંમાતર શ્રેણીમંા હોય કે જયાંં ${a_i} > 0$,તો $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $ ___.
$\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$
$\frac{{n + 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$
$\frac{{n - 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$
$\frac{{n + 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$
સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$
જો $a, b, c, d, e$ સમાંતર શ્રેણીમાં અને હોય, તો $a - 4b + 6c - 4d + e$ નું મૂલ્ય કેટલું થાય ?
જો $\frac{1}{{b\, + \,c}},\,\frac{1}{{c\, + \,a}},\,\frac{1}{{a\, + \,b}}$ સમાંતર શ્રેણીમાં હોય, તો $a^2, b^2, c^2$ કઈ શ્રેણીમાં હશે ?
સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે. જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો.
જો શ્રેણીના પહેલા $n$ પદોનો સરવાળો $An^2 + Bn$ સ્વરૂપમાં હોય જ્યાં $A, B$ એ $n$ ના નિરપેક્ષ અચળ છે, તો ........ શ્રેણી છે.