If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }} = $

  • [IIT 1982]
  • A

    $\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$

  • B

    $\frac{{n + 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$

  • C

    $\frac{{n - 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$

  • D

    $\frac{{n + 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$

Similar Questions

If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term

Let the digits $a, b, c$ be in $A.P.$ Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in $A.P.$ at least once. How many such numbers can be formed?

  • [JEE MAIN 2023]

The sum of all natural numbers between $1$ and $100$ which are multiples of $3$ is

If the first term of an $A.P. $ be $10$, last term is $50$ and the sum of all the terms is $300$, then the number of terms are

Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is

  • [KVPY 2013]