यदि ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ व $z$ एक सम्मिश्र संख्या इस प्रकार है कि $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4}$, तो $|z - 7 - 9i|$ का मान है
$\sqrt 2 $
$2\sqrt 2 $
$3\sqrt 2 $
$2\sqrt 3 $
माना $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$ है। तो $\sum_{z \in S}|z|^2$ बराबर है
यदि सम्मिश्र संख्या $z = x + iy$ इस प्रकार ली जाती है कि भिन्न $\frac{{z - 1}}{{z + 1}}$ का कोणांक सदैव $\frac{\pi }{4}$ हो, तो
सम्मिश्र संख्या $\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 + i}}$का कोणांक है
यदि ${z_1} = a + ib$ व ${z_2} = c + id$ सम्मिश्र संख्यायें इस प्रकार हैं कि $|{z_1}| = |{z_2}| = 1$ व $R({z_1}\overline {{z_2}} ) = 0,$ तो सम्मिश्र संख्याओं का युग्म ${w_1} = a + ic$ व ${w_2} = b + id$ संतुष्ट करता है
यदि $z$ अधिकतम मापांक की एक सम्मिश्र संख्या इस प्रकार है कि $\left| {z + \frac{1}{z}} \right| = 1$ एवं $z, x$ अक्ष पर नहीं है, तो