यदि ${z_1} = a + ib$ व ${z_2} = c + id$ सम्मिश्र संख्यायें इस प्रकार हैं कि $|{z_1}| = |{z_2}| = 1$ व $R({z_1}\overline {{z_2}} ) = 0,$ तो सम्मिश्र संख्याओं का युग्म ${w_1} = a + ic$ व ${w_2} = b + id$ संतुष्ट करता है
$|{w_1}| = 1$
$|{w_2}| = 1$
$R({w_1}\overline {{w_2}} ) = 0,$
उपरोक्त सभी
समीकरण $|1-i|^{x}=2^{x}$ के शून्येत्तर पूर्णाक मूलों की संख्या ज्ञात कीजिए।
यदि $z _1$ तथा $z _2$ दो सम्मिश्र संख्याऐं इस प्रकार है कि $\overline{ z }_1= i \overline{ z }_2$ तथा $\arg \left(\frac{ z _1}{\overline{ z }_2}\right)=\pi$ है। तब $-$
यदि $z_{1}=2-i, z_{2}=1+i,\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ का मान ज्ञात कीजिए।
$(z + a)(\bar z + a)$ तुल्य है (जहाँ $a$ वास्तविक है)
यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है