माना $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$ है। तो $\sum_{z \in S}|z|^2$ बराबर है
$\frac{7}{2}$
$4$
$\frac{5}{2}$
$3$
यदि ${z_1},{z_2} \in C$, तो कोणांक $\left( {\frac{{{{\rm{z}}_{\rm{1}}}}}{{{{{\rm{\bar z}}}_{\rm{2}}}}}} \right) = $
माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है
$(z + a)(\bar z + a)$ तुल्य है (जहाँ $a$ वास्तविक है)
सम्मिश्र संख्या $ - 1 + i\sqrt 3 $ का कोणांक ............ $^\circ$ है
यदि समुच्चय $\left\{\operatorname{Re}\left(\frac{\mathrm{z}-\overline{\mathrm{z}}+\mathrm{z} \overline{\mathrm{z}}}{2-3 \mathrm{z}+5 \overline{\mathrm{z}}}\right): \mathrm{z} \in \mathbb{C}, \operatorname{Re}(\mathrm{z})=3\right\}$ अंतराल $(\alpha, \beta]$ के बराबर है, तो $24(\beta-\alpha)$ का मान है: