If ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ and $z$ is a complex number such that $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4},$ then the value of $|z - 7 - 9i|$ is equal to
$\sqrt 2 $
$2\sqrt 2 $
$3\sqrt 2 $
$2\sqrt 3 $
If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false
If $x+i y=\frac{a+i b}{a-i b},$ prove that $x^{2}+y^{2}=1$
$arg\,(5 - \sqrt 3 i) = $
If $\frac{\pi }{2} < \alpha < \frac{3}{2}\pi $ , then the modulus and argument of $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ is respectively
If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to