જો ${z_1},{z_2},{z_3}$ એ સંકર સંખ્યા છે કે જેથી $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ તો${\rm{ }}|{z_1} + {z_2} + {z_3}|$ = . ..
$1$
$1$ કરતાં ઓછી
$3$ કરતાં મોટી
$3$
જો ${z_1} = a + ib$ અને ${z_2} = c + id$ એ સંકર સંખ્યા છે કે જેથી $|{z_1}| = |{z_2}| = 1$ અને $R({z_1}\overline {{z_2}} ) = 0,$ તો સંકર સંખ્યા ${w_1} = a + ic$ અને ${w_2} = b + id$ ની જોડ એ . . . . નું સમાધાન કરે.
સંકર સંખ્યા $z = \sin \alpha + i(1 - \cos \alpha )$ નો કોણાંક મેળવો.
જો સમીકરણ $x^{2}+b x+45=0(b \in R)$ ને અનુબદ્ધ સંકર બીજો છે અને જે $|z+1|=2 \sqrt{10}$ નું પાલન કરે છે તો . . . .
જો ${z_1},{z_2}$ બે સંકર સંખ્યા છે કે જેથી $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ અને $i{z_1} = k{z_2}$,કે જ્યાં $k \in R$, તો ${z_1} - {z_2}$ અને ${z_1} + {z_2}$ વચ્ચેનો ખૂણો મેળવો.
$\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ નો કોણાંક મેળવો.