જો સમીકરણ $x^{2}+b x+45=0(b \in R)$ ને અનુબદ્ધ સંકર બીજો છે અને જે $|z+1|=2 \sqrt{10}$ નું પાલન કરે છે તો . . . .
$b^{2}-b=42$
$b^{2}+b=12$
$b^{2}+b=72$
$b^{2}-b=30$
જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા હોય તો $|{z_1} - {z_2}|$ = . ..
$a$ એ વાસ્તવિક હોય તો , $(z + a)(\bar z + a)$= . . . .
જો ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ અને $z$ એ સંકર સંખ્યા છે કે જેથી $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4},$ તો $|z - 7 - 9i|$ = . . .
સમીકરણ $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ ના ઉકેલો મેળવો
$(i = \sqrt{-1})$
$|z + i|\, = \,|z - i|$ થવા માટે $z$ એ . . . ... થાય.