If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies
$|{w_1}| = 1$
$|{w_2}| = 1$
$R({w_1}\overline {{w_2}} ) = 0,$
All the above
Let ${z_1}$ be a complex number with $|{z_1}| = 1$ and ${z_2}$be any complex number, then $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are
If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then