यदि $z_{1}=2-i, z_{2}=1+i,\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ का मान ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$z_{1}=2-i, z_{2}=1+i$

$\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|$

$=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|$

$=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{\left(1^{2}-i^{2}\right)}\right|$

$=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]$

$=\left|\frac{2(1+i)}{2}\right|$

$=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$

Similar Questions

यदि  ${z_1}.{z_2}........{z_n} = z,$ हो, तब $arg\,{z_1} + arg\,{z_2} + ....$+$arg{z_n}$और $arg\,z$ का अन्तर होगा

यदि $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$, तब  

यदि दो सम्मिश्र संख्याओं के मापांक इकाई से कम हैं, तो इन सम्मिश्र संख्याओं के योग का मापांक होगा

यदि$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$तब कोणांक $(z) = $ .............. $^\circ$

समीकरण $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$को संतुष्ट करने वाली सम्मिश्र संख्या है