If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is
$0$
$ - \frac{1}{{|z + 1{|^2}}}$
$\left| {\frac{z}{{z + 1}}} \right|\,.\frac{1}{{|z + 1{|^2}}}$
$\frac{{\sqrt 2 }}{{|z + 1{|^2}}}$
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is
Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to
Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then
If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to
If $z = 3 + 5i,\,\,{\rm{then }}\,{z^3} + \bar z + 198 = $