Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then

  • [JEE MAIN 2022]
  • A

    $\arg z _{2}=\frac{\pi}{4}$

  • B

    $\arg z _{2}=-\frac{3 \pi}{4}$

  • C

    $\arg z _{1}=\frac{\pi}{4}$

  • D

    $\arg z _{1}=-\frac{3 \pi}{4}$

Similar Questions

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [IIT 1982]

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

  • [IIT 2020]

If ${z_1}.{z_2}........{z_n} = z,$ then $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ and $arg$$z$ differ by a

If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to

If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals 

  • [JEE MAIN 2014]