The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is
$\frac{{7 - 26i}}{{25}}$
$\frac{{ - 7 - 26i}}{{25}}$
$\frac{{ - 7 + 26i}}{{25}}$
$\frac{{7 + 26i}}{{25}}$
If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$
If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )
If $z$ is a complex number such that $| z | = 4$ and $arg \,(z) = \frac {5\pi }{6}$ , then $z$ is equal to
The values of $z$for which $|z + i|\, = \,|z - i|$ are