If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to
$arg{\left( {\frac{{{z_2} - {z_1}}}{{{z_3} - {z_1}}}} \right)^2}$
$arg\left( {\frac{{{z_2} - {z_1}}}{{{z_3} - {z_1}}}} \right)$
$arg{\left( {\frac{{{z_3} - {z_1}}}{{{z_2} - {z_1}}}} \right)^2}$
$arg\left( {\frac{{{z_3} - {z_1}}}{{{z_2} - {z_1}}}} \right)$
Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to
If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is
Consider the following two statements :
Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$
$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and
Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then
$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$
Between the above two statements,
The value of $|z - 5|$if $z = x + iy$, is