Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{{\sqrt {34} }}{3}$

  • B

    $\frac{5}{3}$

  • C

    $\frac{{\sqrt {41} }}{4}$

  • D

    $\frac{5}{4}$

Similar Questions

Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.

Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . . 

  • [IIT 2022]

If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z  = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -

Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^2+z+1\right|=1$. Then which of the following statements is/are $TRUE$?

$(A)$ $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$  $(B)$ $|z| \leq 2$ for all $z \in S$

$(C)$ $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$  $(D)$ The set $S$ has exactly four elements

  • [IIT 2020]

Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-$I$ to the correct entries in List-$II$.

List-$I$ List-$II$
($P$) $|z|^2$ is equal to ($1$) $12$
($Q$) $|z-\bar{z}|^2$ is equal to ($2$) $4$
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to ($3$) $8$
($S$) $|z+1|^2$ is equal to ($4$) $10$
  ($5$) $7$

The correct option is:

  • [IIT 2023]