If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $
$1$
$2$
$3$
None of these
If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is
${a^{m{{\log }_a}n}} = $