${a^{m{{\log }_a}n}} = $
${a^{mn}}$
${m^n}$
${n^m}$
None of these
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.