${a^{m{{\log }_a}n}} = $
${a^{mn}}$
${m^n}$
${n^m}$
None of these
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is