${a^{m{{\log }_a}n}} = $

  • A

    ${a^{mn}}$

  • B

    ${m^n}$

  • C

    ${n^m}$

  • D

    None of these

Similar Questions

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is

For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$

Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.

If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is