${a^{m{{\log }_a}n}} = $
${a^{mn}}$
${m^n}$
${n^m}$
None of these
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
The value of the fifth root of $10^{10^{10}}$ is
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $