${a^{m{{\log }_a}n}} = $
${a^{mn}}$
${m^n}$
${n^m}$
None of these
$\root 4 \of {(17 + 12\sqrt 2 )} = $
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $