Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
${\log _9}(9/\sqrt 8 )$
${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$
${\log _e}(9/\sqrt 8 )$
None of these
The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
$\sqrt {(3 + \sqrt 5 )} $ is equal to
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$