The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is
${a^{1/3}} - {a^{ - 1/3}}$
${a^{2/3}} + {a^{ - 2/3}}$
${a^{2/3}} - {a^{ - 2/3}}$
${a^{2/3}} + {a^{ - 2/3}} - 1$
The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is