Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$

  • A

    $A = 1$

  • B

    $B = -3$

  • C

    $C = 2$

  • D

    All of these

Similar Questions

Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $

$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $