If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $
$1$
$0$
$abc$
None of these
The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are