If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $

  • A

    $1$

  • B

    $0$

  • C

    $abc$

  • D

    None of these

Similar Questions

The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$

Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are