If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
$64/27$
$-1$
$0$
None of these
If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is
${a^{m{{\log }_a}n}} = $
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $