If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
$n$
${n^{1/m}}$
${n^{1/(n - 1)}}$
None of these
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is