The cube root of $9\sqrt 3 + 11\sqrt 2 $ is

  • A

    $2\sqrt 3 + \sqrt 2 $

  • B

    $\sqrt 3 + 2\sqrt 2 $

  • C

    $3\sqrt 3 + \sqrt 2 $

  • D

    $\sqrt 3 + \sqrt 2 $

Similar Questions

Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$

Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),}  $ then

Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $