The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

  • A

    $2 + \sqrt 2 $

  • B

    $2 - \sqrt 2 $

  • C

    $\sqrt 2 - 1$

  • D

    None of these

Similar Questions

If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $

${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $

For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are