The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

  • A

    $2 + \sqrt 2 $

  • B

    $2 - \sqrt 2 $

  • C

    $\sqrt 2 - 1$

  • D

    None of these

Similar Questions

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $

If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $

If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $

${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$