If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $

  • A

    $y$

  • B

    $2y$

  • C

    $2xyz$

  • D

    None of these

Similar Questions

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $

${a^{m{{\log }_a}n}} = $

The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is

  • [KVPY 2021]

The cube root of $9\sqrt 3 + 11\sqrt 2 $ is