If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
$5$
$\sqrt 5 $
$1/5$
$1/\sqrt 5 $
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then
The value of the fifth root of $10^{10^{10}}$ is
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $