જો ${({a^m})^n} = {a^{{m^n}}}$, તો $'m'$ ને $'n'$ ના સ્વરૂપ માં મેળવો.
$n$
${n^{1/m}}$
${n^{1/(n - 1)}}$
એકપણ નહીં
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
જો ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ તો $m =$
જો $x \ne 0 $ તો ${\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
$x$ ની કેટલી કિમંતો સમીકરણ ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$ નું સમાધાન કરે.