माना बिंदु $(-1,0)$ से होकर जाने वाला तथा रेखा $y=x$ को $(1,1)$ पर स्पर्श करने वाला द्विघातीय वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x})$ है, तो प्रथम चतुर्थांश में बिंदु $(\alpha, \alpha+1)$ पर वक्र के अभिलंब का $\mathrm{x}$-अंतःखंड है :
$(R × P) \cap (R × Q)$
$(R \times Q) \cup (R \times P)$
$(R \times P) \cup (R \times Q)$
None of these
यदि $A$ और $ B$ दो समुच्चय हैं, तब $A × B = B × A $ यदि और केवल यदि
मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए
$A \times(B \cap C)$
बतलाइए कि निम्नलिखित कथनों में से प्रत्येक सत्य है अथवा असत्य है। यदि कथन असत्य है, तो दिए गए कथन को सही बना कर लिखिए।
यदि $A =\{1,2\}, B =\{3,4\},$ तो $A \times( B \cap \phi)=\phi .$
यदि $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ तो $A$ और $B$ को ज्ञात कीजिए।
यदि समुच्चय $A$ में $p$ अवयव,$ B$ में $q$ अवयव हैं, तब $ A × B $ में अवयवों की संख्या होगी