माना बिंदु $(-1,0)$ से होकर जाने वाला तथा रेखा $y=x$ को $(1,1)$ पर स्पर्श करने वाला द्विघातीय वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x})$ है, तो प्रथम चतुर्थांश में बिंदु $(\alpha, \alpha+1)$ पर वक्र के अभिलंब का $\mathrm{x}$-अंतःखंड है :

  • A

    $(R × P)  \cap (R × Q)$

  • B

    $(R \times Q) \cup (R \times P)$

  • C

    $(R \times P) \cup (R \times Q)$

  • D

    None of these

Similar Questions

मान लीजिए कि $A =\{1,2\}$ और $B =\{3,4\} . A \times B$ लिखिए। $A \times B$ के कितने उपसमुच्चय होंगे ? उनकी सूची बनाइए

जब $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, है तो $n(C) = $

मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए

$A \times(B \cap C)$

यदि $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ तब $ (A -B)× (B -C)$  है

मान लीजिए कि $A$ और $B$ दो समुच्चय हैं, जहाँ $n( A )=3$ और $n( B )=2 .$ यदि $(x, 1),$ $(y, 2),(z, 1), A \times B$ में हैं, तो $A$ और $B ,$ को ज्ञात कीजिए, जहाँ $x, y$ और $=$ भिन्न-भिन्न अवयव हैं।