If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$
$(R × P) \cap (R × Q)$
$(R \times Q) \cup (R \times P)$
$(R \times P) \cup (R \times Q)$
None of these
Let $A$ and $B$ be two sets such that $n(A)=3$ and $n(B)=2 .$ If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find $A$ and $B$, where $x, y$ and $z$ are distinct elements.
If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
If $A = \{ 1,\,2,\,3,\,4\} $; $B = \{ a,\,b\} $ and $f$ is a mapping such that $f:A \to B$, then $A \times B$ is
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cup(A \times C)$