If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c  \cup  Q^c)^c =$

  • A

    $(R × P)  \cap (R × Q)$

  • B

    $(R \times Q) \cup (R \times P)$

  • C

    $(R \times P) \cup (R \times Q)$

  • D

    None of these

Similar Questions

State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.

If $A=\{1,2\}, B=\{3,4\},$ then $A \times\{B \cap \varnothing\}=\varnothing$

$A = \{1,2,3,4......100\}, B = \{51,52,53,...,180\}$, then number of elements in $(A \times B) \cap  (B \times A)$ is

Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that

$A \times(B \cap C)=(A \times B) \cap(A \times C)$

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cup(A \times C)$

Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is