यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है
$49$
$98$
$147$
$294$
समीकरण $\mathrm{e}^{\sin x}-2 \mathrm{e}^{-\sin x}=2$ के हलों की संख्या है
समीकरण |${x^2}$ + 4x + 3| + 2x + 5 = 0 के वास्तविक हलों की संख्या है
समीकरण ${x^3} + 3Hx + G = 0$ में यदि $G$ तथा $H$ वास्तविक हों और ${G^2} + 4{H^3} > 0,$ तब मूल होंगे
यदि समीकरण ${x^3} + px + q = 0$ के मूल $\alpha ,\beta $ और $\gamma $ हों तो ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ का मान होगा
$k ( k \neq 0)$ के सभी पूर्णांक मानों, जिनके लिए $x$ में समीकरण $\frac{2}{ x -1}-\frac{1}{ x -2}=\frac{2}{ k }$ का कोई वास्तविक मूल नहीं है, का योग है .......... |