જો $a _{1}, a _{2}, a _{3} \ldots$ અને $b _{1}, b _{2}, b _{3} \ldots$ એ સમાંતર શ્રેણી મા હોય તથા $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ હોય,તો $a_{4} b_{4}=\dots$
$\frac{35}{27}$
$1$
$\frac{27}{28}$
$\frac{28}{27}$
વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો ચાર સંખ્યાઓનો સામાન્ય તફાવત કેટલો થાય ?
$f(x)$ એ દ્વિઘાત બહુપદી છે. જો $f(1) = f(-1)$ અને $a, b, c$ સમાંતર શ્રેણી બનાવે તો $f'(a), f'(b) ,f'(c)$ પણ..... શ્રેણી બનાવે.
સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$
સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$