સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.
$1$
$4$
$6$
$8$
જો સમાંતર શ્રેણી નું $m$ મું પદ $1/n$ અને $n$ મું પદ $1/m$ હોય તો $mn$ પદોનો સરવાળો ......થાય.
જો સમાંતર શ્રેણીનું $n$ મું પદ $t_n$ અને જો $t_7 = 9,$ હોય, તો સામાન્ય તફાવતનું મૂલ્ય કે જે $t_1\ t_2\ t_7$ ને લઘુત્તમ બનાવે તે કેટલું હશે ?
સમાંતર શ્રેણીનું $r$ મું પદ $Tr$ છે. તેનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ છે. જો કેટલાક ધન પૂર્ણાકો $m, n, m \neq n,$ માટે $T_m = 1/n$ અને $T_n = 1/m,$ હોય તો $a - d = …….$
એક સમાંતર શ્રેણીનાં પ્રથમ $p, q$ અને $r$ પદોના સરવાળા અનુક્રમે $a, b$ અને $c$ છે. સાબિત કરો કે $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?