વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો ચાર સંખ્યાઓનો સામાન્ય તફાવત કેટલો થાય ?

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $-3$

Similar Questions

જો $a,b,c,d$ અને $p$ જુદી જુદી વાસ્તવિક સંખ્યાઓ હોય કે જેથી $(a^2 + b^2 + c^2)\ p^2 - 2p (ab + bc + cd) + (b^2 + c^2 + d^2) \leq  0$, થાય તો ....

ધારો કે $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$ એ ધન પદોવાળી સમાંતર શ્રેણી છે. ધારોકે

$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$ .

જો $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ અને $\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$ હોય, તો $\mathrm{a}_{17}-\mathrm{A}_7=$............

  • [JEE MAIN 2024]

ધારો કે $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots n$ પદો સુધી. જો પ્રથમ પદ $- p$ તથા સામાન્ય તફાવત $p$ હોય તવી એક સમાંતર શ્રેણી $(A.P.)$ નાં પ્રથમ છ પદોનો સરવાળો $\sqrt{2026 S_{2025}}$ હોય, તો સમાંતર શ્રેણીના $20^{\text {th }}$ માં અને $15^{\text {th }}$ મા પદોનો નિરપેક્ષ તફાવત_________છે.

  • [JEE MAIN 2025]

ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.

  • [JEE MAIN 2022]

જો ${a_1},\;{a_2},\;{a_3}.......{a_n}$ એ સંમાતર શ્રેણીમંા હોય કે જયાંં ${a_i} > 0$,તો $\frac{1}{{\sqrt {{a_1}}  + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}}  + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }} = $ ___.         

  • [IIT 1982]