यदि वक्रों $\frac{x^2}{16}+\frac{y^2}{9}=1$ और $x^2+y^2=12$ की उभयनिष्ट स्पर्श रेखा की ढाल $m$ हो तो $12 m ^2$ का मान होगा
$6$
$9$
$10$
$12$
यदि एक दीर्घवृत्त की एक नाभि तथा संगत नियता के बीच की दूरी $8$ तथा उत्केन्द्रता $\frac{1}{2}$ हो, तो दीर्घवृत्त के लघुअक्ष की लम्बाई होगी
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$
यदि दीर्घवृत्त $x ^{2}+2 y ^{2}=2$ के चार शीर्षो के अतिरिक्त इसके सभी बिन्दुओं पर स्पर्श रेखायें खींची गई हैं, तो इन स्पर्श रेखाओं के निर्देशांक अक्षों के बीच के अंतः खंडों के मध्य बिन्दु निम्न में से किस वक्र पर है
$x$ अक्ष से ${60^o}$ का कोण बनाने वाली दीर्घवृत्त ${x^2} + 16{y^2} = 16$ की स्पर्श रेखा का समीकरण है
दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की नियता $\mathrm{x}=8$ है तथा संगत नाभि $(2,0)$ है। यदि प्रथम चतुर्थांश में $\mathrm{E}$ के बिन्दु $\mathrm{P}$ पर स्पर्श रेखा, बिन्दु $(0,4 \sqrt{3})$ से होकर जाती है तथा $\mathrm{x}$-अक्ष को $\mathrm{Q}$ पर काटती है, तो $(3 \mathrm{PQ})^2$ बराबर है _______________