यदि ${z_1}.{z_2}........{z_n} = z,$ हो, तब $arg\,{z_1} + arg\,{z_2} + ....$+$arg{z_n}$और $arg\,z$ का अन्तर होगा
$\pi $का गुणज
$\frac{\pi }{2}$का गुणज
$\pi $ से बड़ा
$\pi $से कम
यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है
यदि $Z$ तथा $W$ दो ऐसी सम्मिश्र संख्याएँ है कि $| ZW |=1$ तथा $\arg ( z )-\arg ( w )=\frac{\pi}{2}$, तो
मापांक और कोणांक ज्ञात कीजिए
$z=-1-i \sqrt{3}$
यदि $(x + iy)(1 - 2i)$ का संयुग्मी $1 + i$ हो, तो
यदि ${z_1} = 1 + 2i$ और ${z_2} = 3 + 5i$, तब${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$=