यदि दो सम्मिश्र संख्याओं के मापांक इकाई से कम हैं, तो इन सम्मिश्र संख्याओं के योग का मापांक होगा
इकाई से कम
इकाई से अधिक
इकाई के बराबर
कोई भी
यदि $z$ एक ऐसी सम्मिश्र संख्या है कि $|z| \geq 2$ है, तो $\mid z+\frac{1}{2} \mid$ का न्यूनतम मान:
यदि कोणांक $(z) = \theta $, तो कोणांक $\,(\overline z ) = $
माना दो सम्मिश्र संख्याओं $z$ तथा $w$ के लिए $w = zz -2 z +2,\left|\frac{ z + i }{ z -3 i }\right|=1$ हैं तथा $\operatorname{Re}( w )$ का मान निम्नतम है। तो $n \in N$ का निम्नतम मान, जिसके लिए $w ^{ n }$ वास्तविक है, बराबर ........... है |
यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
माना $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$ है। तो $\sum_{z \in S}|z|^2$ बराबर है