If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$z_{1}=2-i, z_{2}=1+i$

$\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|$

$=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|$

$=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{\left(1^{2}-i^{2}\right)}\right|$

$=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]$

$=\left|\frac{2(1+i)}{2}\right|$

$=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$

Similar Questions

Conjugate of $1 + i$ is

The sum of amplitude of $z$ and another complex number is $\pi $. The other complex number can be written

If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to

Let $w$ $(Im\, w \neq 0)$ be a complex number. Then the set of all complex number $z$ satisfying the equation $w - \overline {w}z  = k\left( {1 - z} \right)$ , for some real number $k$, is

  • [JEE MAIN 2014]

If $arg\,(z) = \theta $, then $arg\,(\overline z ) = $