यदि $\tan x=\frac{3}{4}, \pi< x< \frac{3 \pi}{2},$ तो $\sin _{2}^{x}, \cos _{2}^{x}$ तथा $\tan _{2}^{x}$ के मान ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $\pi < x < \frac{3 \pi}{2}, \cos x$ is negative.

Also $\quad \frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{4}$

Therefore, $\sin \frac{x}{2}$ is positive and $\cos \frac{x}{2}$ is negative.

Now $\sec ^{2} x=1+\tan ^{2} x=1+\frac{9}{16}=\frac{25}{16}$

Therefore $\cos ^{2} x=\frac{16}{25}$ or $\cos x=-\frac{4}{5} \quad$ (Why?)

Now $2 \sin ^{2} \frac{x}{2}=1-\cos x=1+\frac{4}{5}=\frac{9}{5}$

Therefore $\sin ^{2} \frac{x}{2}=\frac{9}{10}$

or $\sin \frac{x}{2}=\frac{3}{\sqrt{10}} \quad$ (Why?)

Again $2 \cos ^{2} \frac{x}{2}=1+\cos x=1-\frac{4}{5}=\frac{1}{5}$

Therefore $\cos ^{2} \frac{x}{2}=\frac{1}{10}$or $\cos \frac{x}{2}=-\frac{1}{\sqrt{10}}(\text { Why? })$

Hence $\quad \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{3}{\sqrt{10}} \times\left(\frac{-\sqrt{10}}{1}\right)=-3$

Similar Questions

यदि $\sec \theta  + \tan \theta  = p,$ तब $\tan \theta $ बराबर है

$\tan ( - 945^\circ )$ का मान है

यदि $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$,तथा $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ तो

यदि $\sin {\theta _1} + \sin {\theta _2} + \sin {\theta _3} = 3,$ तब  $\cos {\theta _1} + \cos {\theta _2} + \cos {\theta _3} = $

सिद्ध कीजिए

$(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$