If $\tan x=\frac{3}{4}, \pi < x < \frac{3 \pi}{2},$ find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$
since $\pi < x < \frac{3 \pi}{2}, \cos x$ is negative.
Also $\quad \frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{4}$
Therefore, $\sin \frac{x}{2}$ is positive and $\cos \frac{x}{2}$ is negative.
Now $\sec ^{2} x=1+\tan ^{2} x=1+\frac{9}{16}=\frac{25}{16}$
Therefore $\cos ^{2} x=\frac{16}{25}$ or $\cos x=-\frac{4}{5} \quad$ (Why?)
Now $2 \sin ^{2} \frac{x}{2}=1-\cos x=1+\frac{4}{5}=\frac{9}{5}$
Therefore $\sin ^{2} \frac{x}{2}=\frac{9}{10}$
or $\sin \frac{x}{2}=\frac{3}{\sqrt{10}} \quad$ (Why?)
Again $2 \cos ^{2} \frac{x}{2}=1+\cos x=1-\frac{4}{5}=\frac{1}{5}$
Therefore $\cos ^{2} \frac{x}{2}=\frac{1}{10}$or $\cos \frac{x}{2}=-\frac{1}{\sqrt{10}}(\text { Why? })$
Hence $\quad \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{3}{\sqrt{10}} \times\left(\frac{-\sqrt{10}}{1}\right)=-3$
$(m + 2)\sin \theta + (2m - 1)\cos \theta = 2m + 1,$ if
If $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$$ = \tan \alpha \tan \beta \tan \gamma $, then $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $
If $\tan \,(A - B) = 1,\,\,\,\sec \,(A + B) = \frac{2}{{\sqrt 3 }},$ then the smallest positive value of $B$ is
If $\sec \theta + \tan \theta = p,$ then $\tan \theta $ is equal to
If $\tan \theta = \frac{a}{b},$ then $\frac{{\sin \theta }}{{{{\cos }^8}\theta }} + \frac{{\cos \theta }}{{{{\sin }^8}\theta }} = $