$0,1,3,5,7$ तथा $9$ अंकों से, $10$ से विभाजित होने वाली और बिना पुनरावृत्ति किए कितनी $6$ अंकीय संख्याएँ बनाई जा सकती हैं ?
A number is divisible by $10$ if its units digits is $0 .$
Therefore, $0$ is fixed at the units place.
Therefore, there will be as many ways as there are ways of filling $5$ vacant places $\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed0\,$ in succession by the remaining $5$ digits (i.e., $1,3,5,7$ and $9$ ).
The $ 5$ vacant places can be filled in $5 !$ Ways.
Hence, required number of $6 -$ digit numbers $=5 !=120$
$15$ लड़कों तथा $8$ लड़कियों के एक समूह से एक लड़का तथा एक लड़की कितने प्रकार से चुनी जा सकती हैं
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
सभी पत्ते एक ही रंग के हैं ?
अऋणात्मक पूर्णांको $s$ तथा $r$ के लिये, माना $\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
धनात्मक पूर्णांकों $m$ तथा $n$ के लिये, माना $(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$ जहाँ किसी अॠणात्मक पूर्णांक $p$, के लिये
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$ तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी धनात्मक पूर्णांको $m$, के लिये $g ( m , n )= g ( n , m )$ होगा।
$(B)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g ( m , n +1)= g ( m +1, n )$ होगा।
$(C)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=2 g ( m , n )$ होगा।
$(D)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=( g ( m , n ))^2$ होगा।
$6$ व्यंजन व $5$ स्वरों से $4$ व्यंजन एवं $3$ स्वरों के कुल कितने शब्द बनाये जा सकते हैं
एक कक्षा में $b$ लड़के तथा $g$ लड़कियाँ हैं। यदि इस कक्षा में से $3$ लड़के तथा $2$ लड़कियाँ चुनने के तरीकों की संख्या $168$ है, तो $b +3 g$ बराबर है $..........$