અંકો $0, 1, 3, 5, 7$ અને $9$ ના ઉપયોગથી પુનરાવર્તન વગર $6$ અંકોની $10$ વડે વિભાજ્ય હોય તેવી કેટલી સંખ્યાઓ બને ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

A number is divisible by $10$ if its units digits is $0 .$

Therefore, $0$ is fixed at the units place.

Therefore, there will be as many ways as there are ways of filling $5$ vacant places $\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed{}\,\boxed0\,$ in succession by the remaining $5$ digits (i.e., $1,3,5,7$ and $9$ ).

The $ 5$ vacant places can be filled in  $5 !$ Ways.

Hence, required number of $6 -$ digit numbers $=5 !=120$

Similar Questions

જો  $\left( {\begin{array}{*{20}{c}}
  {{a^2} + a} \\ 
  3 
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  {{a^2} + a} \\ 
  9 
\end{array}} \right)\,$  હોય, તો $a\, = \,\,........$

જો $N$ એ જેના સહગુણકો ગણ $\{0, 1, 2, …….9\}$ માંથી હોય અને જેનો એક ઉકેલ $0$ હોય તેવા દ્રિધાત સમીકરણોની સંખ્યા દર્શાવે તો $N$ ની કિંમત …. છે.

બે અમેરિકન, બે અંગ્રેજ, એક ચાઇનિજ, એક ડચ અને એક ઈજિપ્તને એક વર્તુળાકાર ટેબલ પર કેટલી રીતે બેસાડી શકાય કે જેથી સરખી નાગરિકતા ધરાવતાં લોકોને અલગ અલગ બેસે ?

જો$\sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}}{10}\\i\end{array}} \right)} \,\left( {\begin{array}{*{20}{c}}{20}\\{m - i}\end{array}} \right)\,,$ $\left( {{\rm{where}}\,\left( {\begin{array}{*{20}{c}}p\\q\end{array}} \right)\, = 0\,{\rm{if}}\,p < q} \right)$ નો સરવાળો મહતમ હોય,તો $m$ ની કિંમત મેળવો.                        

  • [IIT 2002]

એક પુરૂષ $X$ ને $7$ મિત્રો છે તેમાંથી $4$ સ્ત્રીઓ છે અને $3 $ પુરૂષો છે.તેની પત્ની $Y$ ને પણ $7$ મિત્રો છે તેમાંથી $3$ સ્ત્રીઓ છે અને $4$ પુરૂષો છે. માની લો કે $X$ અને $Y$ ને એકપણ સમાન મિત્ર નથી. $X $ અને $Y$  ભેગા મળીને $ 3$ સ્ત્રીઓ અને $3$ પુરૂષો આમંત્રિત હોય તેવી પાર્ટી કેટલી રીતે આપશે કે જેથી તેમાં $X$ અને $ Y$ દરેકના ત્રણ મિત્રો હોય ? .

  • [JEE MAIN 2017]